کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
401350 675343 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Field of moduli of generalized Fermat curves of type (k,3)(k,3) with an application to non-hyperelliptic dessins d'enfants
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Field of moduli of generalized Fermat curves of type (k,3)(k,3) with an application to non-hyperelliptic dessins d'enfants
چکیده انگلیسی

A generalized Fermat curve of type (k,3)(k,3), where k≥2k≥2, is a closed Riemann surface admitting a group H≅Zk3 as a group of conformal automorphisms so that the quotient orbifold S/HS/H is the Riemann sphere and it has exactly 4 cone points, each one of order k  . Every genus one Riemann surface is a generalized Fermat curve of type (2,3)(2,3) and, if k≥3k≥3, then a generalized Fermat curve of type (k,3)(k,3) is non-hyperelliptic. For each generalized Fermat curve, we compute its field of moduli and note that it is a field of definition. Moreover, for k=e2iπ/pk=e2iπ/p, where p≥5p≥5 is a prime integer, we produce explicit algebraic models over the corresponding field of moduli. As a byproduct, we observe that the absolute Galois group Gal(Q¯/Q) acts faithfully at the level of non-hyperelliptic dessins d'enfants. This last fact was already known for dessins of genus 0, 1 and for hyperelliptic ones, but it seems that the non-hyperelliptic situation is not explicitly given in the existent literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 71, November–December 2015, Pages 60–72
نویسندگان
, ,