کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
401401 675351 2009 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Noncommutative algebra, multiple harmonic sums and applications in discrete probability
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Noncommutative algebra, multiple harmonic sums and applications in discrete probability
چکیده انگلیسی

After having recalled some important results about combinatorics on words, like the existence of a basis for the shuffle algebras, we apply them to some special functions, the polylogarithms and to special numbers, the multiple harmonic sums . In the “good” cases, both objects converge (respectively, as z→1 and as N→+∞) to the same limit, the polyzêta . For the divergent cases, using the technologies of noncommutative generating series, we establish, by techniques “à la Hopf”, a theorem “à l’Abel”, involving the generating series of polyzêtas. This theorem enables one to give an explicit form to generalized Euler constants associated with the divergent harmonic sums, and therefore, to get a very efficient algorithm to compute the asymptotic expansion of any as N→+∞. Finally, we explore some applications of harmonic sums throughout the domain of discrete probabilities, for which our approach gives rise to exact computations, which can be then easily asymptotically evaluated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 44, Issue 7, July 2009, Pages 801-817