کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
401450 675358 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing Gröbner bases of pure binomial ideals via submodules of Zn
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Computing Gröbner bases of pure binomial ideals via submodules of Zn
چکیده انگلیسی

A binomial ideal is an ideal of the polynomial ring which is generated by binomials. In a previous paper, we gave a correspondence between pure saturated binomial ideals of K[x1,…,xn] and submodules of Zn and we showed that it is possible to construct a theory of Gröbner bases for submodules of Zn. As a consequence, it is possible to follow alternative strategies for the computation of Gröbner bases of submodules of Zn (and hence of binomial ideals) which avoid the use of Buchberger algorithm. In the present paper, we show that a Gröbner basis of a Z-module M⊆Zn of rank m lies into a finite set of cones of Zm which cover a half-space of Zm. More precisely, in each of these cones C, we can find a suitable subset Y(C) which has the structure of a finite abelian group and such that a Gröbner basis of the module M (and hence of the pure saturated binomial ideal represented by M) is described using the elements of the groups Y(C) together with the generators of the cones.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 47, Issue 10, October 2012, Pages 1297-1308