کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
401483 675369 2012 25 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Discriminants and nonnegative polynomials
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Discriminants and nonnegative polynomials
چکیده انگلیسی

For a semialgebraic set KK in RnRn, let Pd(K)={f∈R[x]≤d:f(u)≥0∀u∈K} be the cone of polynomials in x∈Rnx∈Rn of degrees at most dd that are nonnegative on KK. This paper studies the geometry of its boundary ∂Pd(K)∂Pd(K). We show that when K=RnK=Rn and dd is even, its boundary ∂Pd(K)∂Pd(K) lies on the irreducible hypersurface defined by the discriminant Δ(f)Δ(f) of ff. We show that when K={x∈Rn:g1(x)=⋯=gm(x)=0}K={x∈Rn:g1(x)=⋯=gm(x)=0} is a real algebraic variety, ∂Pd(K)∂Pd(K) lies on the hypersurface defined by the discriminant Δ(f,g1,…,gm)Δ(f,g1,…,gm) of f,g1,…,gmf,g1,…,gm. We show that when KK is a general semialgebraic set, ∂Pd(K)∂Pd(K) lies on a union of hypersurfaces defined by the discriminantal equations. Explicit formulae for the degrees of these hypersurfaces and discriminants are given. We also prove that typically Pd(K)Pd(K) does not have a barrier of type −logφ(f)−logφ(f) when φ(f)φ(f) is required to be a polynomial, but such a barrier exists if φ(f)φ(f) is allowed to be semialgebraic. Some illustrating examples are shown.


► We study the cones of nonnegative multivariate polynomials.
► Their boundaries are described by discriminants.
► Generally they have no log-polynomial type barrier functions.
► A degree formula is given for discriminants of several polynomials.
► Applications are shown in representing nonnegative polynomials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 47, Issue 2, February 2012, Pages 167–191
نویسندگان
,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت