کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
401484 | 675369 | 2012 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A reduced form for linear differential systems and its application to integrability of Hamiltonian systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let k be a differential field with algebraic closure , and let with A∈Mn(k) be a linear differential system. Denote by g the Lie algebra of the differential Galois group of [A]. We say that a matrix is a reduced form of [A] if and there exists such that . Such a form is often the sparsest possible attainable through gauge transformations without introducing new transcendents. In this paper, we discuss how to compute reduced forms of some symplectic differential systems, arising as variational equations of Hamiltonian systems. We use this to give an effective form of the Morales–Ramis theorem on (non-)-integrability of Hamiltonian systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 47, Issue 2, February 2012, Pages 192-213
Journal: Journal of Symbolic Computation - Volume 47, Issue 2, February 2012, Pages 192-213