کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
401756 676079 2015 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On full rank differential systems with power series coefficients
ترجمه فارسی عنوان
در سیستم های دیفرانسیل رتبه کامل با ضرایب سری قدرت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

We consider the following problem: given a linear ordinary differential system of arbitrary order with formal power series coefficients, decide whether the system has non-zero Laurent series solutions, and find all such solutions if they exist (in a truncated form preserving the space dimension). If the series coefficients of the original systems are represented algorithmically then these problems are algorithmically undecidable. However, it turns out that they are decidable in the case when we know in advance that a given system is of full rank.We define the width of a given full rank system S with formal power series coefficients as the smallest non-negative integer w such that any l-truncation of S   with l⩾wl⩾w is a full rank system. We prove that the value w exists for any full rank system and can be found algorithmically.We propose corresponding algorithms and their Maple implementation, and report some experiments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 68, Part 1, May–June 2015, Pages 120–137
نویسندگان
, , ,