کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
401767 676156 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reduced Gröbner bases and Macaulay–Buchberger Basis Theorem over Noetherian rings
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Reduced Gröbner bases and Macaulay–Buchberger Basis Theorem over Noetherian rings
چکیده انگلیسی

In this paper, we extend the characterization of Z[x]/〈f〉Z[x]/〈f〉, where f∈Z[x]f∈Z[x] to be a free ZZ-module to multivariate polynomial rings over any commutative Noetherian ring, A  . The characterization allows us to extend the Gröbner basis method of computing a kk-vector space basis of residue class polynomial rings over a field kk (Macaulay–Buchberger Basis Theorem) to rings, i.e. A[x1,…,xn]/aA[x1,…,xn]/a, where a⊆A[x1,…,xn]a⊆A[x1,…,xn] is an ideal. We give some insights into the characterization for two special cases, when A=ZA=Z and A=k[θ1,…,θm]A=k[θ1,…,θm]. As an application of this characterization, we show that the concept of Border bases can be extended to rings when the corresponding residue class ring is a finitely generated, free A-module.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 65, November 2014, Pages 1–14
نویسندگان
, ,