کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402534 676958 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A multi-label feature extraction algorithm via maximizing feature variance and feature-label dependence simultaneously
ترجمه فارسی عنوان
یک الگوریتم استخراج ویژگی چند الگوریتم با استفاده از حداکثر واریانس ویژگی و وابستگی ویژگی همزمان است
کلمات کلیدی
طبقه بندی چند لایک، کاهش ابعاد، استخراج ویژگی، تجزیه و تحلیل مولفه اصلی، معیار استقلال هیلبرت اشمیت، مشکل خاص مقدار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We derive a least-squares formulation for MDDMp technique.
• A novel multi-label feature extraction algorithm is proposed.
• Our algorithm maximizes both feature variance and feature-label dependence.
• Experiments show that our algorithm is a competitive candidate.

Dimensionality reduction is an important pre-processing procedure for multi-label classification to mitigate the possible effect of dimensionality curse, which is divided into feature extraction and selection. Principal component analysis (PCA) and multi-label dimensionality reduction via dependence maximization (MDDM) represent two mainstream feature extraction techniques for unsupervised and supervised paradigms. They produce many small and a few large positive eigenvalues respectively, which could deteriorate the classification performance due to an improper number of projection directions. It has been proved that PCA proposed primarily via maximizing feature variance is associated with a least-squares formulation. In this paper, we prove that MDDM with orthonormal projection directions also falls into the least-squares framework, which originally maximizes Hilbert–Schmidt independence criterion (HSIC). Then we propose a novel multi-label feature extraction method to integrate two least-squares formulae through a linear combination, which maximizes both feature variance and feature-label dependence simultaneously and thus results in a proper number of positive eigenvalues. Experimental results on eight data sets show that our proposed method can achieve a better performance, compared with other seven state-of-the-art multi-label feature extraction algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 98, 15 April 2016, Pages 172–184
نویسندگان
, , , ,