کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
402869 677022 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multivariate convex support vector regression with semidefinite programming
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Multivariate convex support vector regression with semidefinite programming
چکیده انگلیسی

As one of important nonparametric regression method, support vector regression can achieve nonlinear capability by kernel trick. This paper discusses multivariate support vector regression when its regression function is restricted to be convex. This paper approximates this convex shape restriction with a series of linear matrix inequality constraints and transforms its training to a semidefinite programming problem, which is computationally tractable. Extensions to multivariate concave case, ℓ2-norm Regularization, ℓ1 and ℓ2-norm loss functions, are also studied in this paper. Experimental results on both toy data sets and a real data set clearly show that, by exploiting this prior shape knowledge, this method can achieve better performance than the classical support vector regression.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 30, June 2012, Pages 87–94
نویسندگان
, ,