کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403183 677064 2013 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the complexity of the generalized MinRank problem
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
On the complexity of the generalized MinRank problem
چکیده انگلیسی

We study the complexity of solving the generalized MinRank problem, i.e. computing the set of points where the evaluation of a polynomial matrix has rank at most r. A natural algebraic representation of this problem gives rise to a determinantal ideal: the ideal generated by all minors of size r+1 of the matrix. We give new complexity bounds for solving this problem using Gröbner bases algorithms under genericity assumptions on the input matrix. In particular, these complexity bounds allow us to identify families of generalized MinRank problems for which the arithmetic complexity of the solving process is polynomial in the number of solutions. We also provide an algorithm to compute a rational parametrization of the variety of a 0-dimensional and radical system of bi-degree (D,1). We show that its complexity can be bounded by using the complexity bounds for the generalized MinRank problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 55, August 2013, Pages 30-58