کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403355 677109 2008 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An efficient sparse adaptation of the polytope method over Fp and a record-high binary bivariate factorisation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An efficient sparse adaptation of the polytope method over Fp and a record-high binary bivariate factorisation
چکیده انگلیسی

A recent bivariate factorisation algorithm appeared in Abu-Salem et al. [Abu-Salem, F., Gao, S., Lauder, A., 2004. Factoring polynomials via polytopes. In: Proc. ISSAC’04. pp. 4–11] based on the use of Newton polytopes and a generalisation of Hensel lifting. Although possessing a worst-case exponential running time like the Hensel lifting algorithm, the polytope method should perform well for sparse polynomials whose Newton polytopes have very few Minkowski decompositions. A preliminary implementation in Abu-Salem et al. [Abu-Salem, F., Gao, S., Lauder, A., 2004. Factoring polynomials via polytopes. In: Proc. ISSAC’04. pp. 4–11] indeed reflects this property, but does not exploit the fact that the algorithm preserves the sparsity of the input polynomial, so that the total amount of work and space required are O(d4) and O(d2) respectively, for an input bivariate polynomial of total degree d. In this paper, we show that the polytope method can be made sensitive to the number of non-zero terms of the input polynomial, so that the input size becomes dependent on both the degree and the number of terms of the input bivariate polynomial. We describe a sparse adaptation of the polytope method over finite fields with prime order, which requires fewer bit operations and memory references given a degree d sparse polynomial whose number of terms t satisfies t

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 43, Issue 5, May 2008, Pages 311-341