کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
403417 677139 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing all roots of the likelihood equations of seemingly unrelated regressions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Computing all roots of the likelihood equations of seemingly unrelated regressions
چکیده انگلیسی

Seemingly unrelated regressions are statistical regression models based on the Gaussian distribution. They are popular in econometrics but also arise in graphical modeling of multivariate dependencies. In maximum likelihood estimation, the parameters of the model are estimated by maximizing the likelihood function, which maps the parameters to the likelihood of observing the given data. By transforming this optimization problem into a polynomial optimization problem, it was recently shown that the likelihood function of a simple bivariate seemingly unrelated regressions model may have several stationary points. Thus local maxima may complicate maximum likelihood estimation. In this paper, we study several more complicated seemingly unrelated regression models, and show how all stationary points of the likelihood function can be computed using algebraic geometry.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Symbolic Computation - Volume 41, Issue 2, February 2006, Pages 245-254