کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405013 677471 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
TreeSOM: Cluster analysis in the self-organizing map
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
TreeSOM: Cluster analysis in the self-organizing map
چکیده انگلیسی

Clustering problems arise in various domains of science and engineering. A large number of methods have been developed to date. The Kohonen self-organizing map (SOM) is a popular tool that maps a high-dimensional space onto a small number of dimensions by placing similar elements close together, forming clusters. Cluster analysis is often left to the user. In this paper we present the method TreeSOM and a set of tools to perform unsupervised SOM cluster analysis, determine cluster confidence and visualize the result as a tree facilitating comparison with existing hierarchical classifiers. We also introduce a distance measure for cluster trees that allows one to select a SOM with the most confident clusters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 19, Issues 6–7, July–August 2006, Pages 935–949
نویسندگان
, , ,