کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
405013 | 677471 | 2006 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
TreeSOM: Cluster analysis in the self-organizing map
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Clustering problems arise in various domains of science and engineering. A large number of methods have been developed to date. The Kohonen self-organizing map (SOM) is a popular tool that maps a high-dimensional space onto a small number of dimensions by placing similar elements close together, forming clusters. Cluster analysis is often left to the user. In this paper we present the method TreeSOM and a set of tools to perform unsupervised SOM cluster analysis, determine cluster confidence and visualize the result as a tree facilitating comparison with existing hierarchical classifiers. We also introduce a distance measure for cluster trees that allows one to select a SOM with the most confident clusters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 19, Issues 6–7, July–August 2006, Pages 935–949
Journal: Neural Networks - Volume 19, Issues 6–7, July–August 2006, Pages 935–949
نویسندگان
Elena V. Samsonova, Joost N. Kok, Ad P. IJzerman,