کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405878 678041 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
LCA based RBF training algorithm for the concurrent fault situation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
LCA based RBF training algorithm for the concurrent fault situation
چکیده انگلیسی

In the construction of a radial basis function (RBF) network, one of the most important issues is the selection of RBF centers. However, many selection methods are designed for the fault free situation only. This paper first assumes that all the training samples are used for constructing a fault tolerant RBF network. We then add an l1 norm regularizer into the fault tolerant objective function. According to the nature of the l1 norm regularizer, some unnecessary RBF nodes are removed automatically during training. Based on the local competition algorithm (LCA) concept, we propose an analog method, namely fault tolerant LCA (FTLCA), to minimize the fault tolerant objective function. We prove that the proposed fault tolerant objective function has a unique optimal solution, and that the FTLCA converges to the global optimal solution. Simulation results show that the FTLCA is better than the orthogonal least square approach and the support vector regression approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 191, 26 May 2016, Pages 341–351
نویسندگان
, , ,