کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406254 678075 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A least squares formulation of multi-label linear discriminant analysis
ترجمه فارسی عنوان
حداقل مربعات فرمولاسیون چند متغیره تجزیه و تحلیل خطای خطی
کلمات کلیدی
تجزیه و تحلیل خطی خطی چند برچسب، کمترین مربعات، کاهش ابعاد، رگرسیون طیفی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We present that the formulation of multi-label linear discriminant analysis can be equivalently casted as a least squares problem.
• Iterative conjugate gradient algorithms for dealing with the least-squares problem can be employed to substantially reduce the computational cost of the original MLDA.
• Various appealing regularization techniques can be readily incorporated into the least-squares model to boost generalization performance.

The classical linear discriminant analysis has been recently extended to the multi-label dimensionality reduction. However, Multi-label Linear Discriminant Analysis (MLDA) involves dense matrices eigen-decomposition that is known to be computationally expensive for the large-scale problems. In this paper, we present that the formulation of MLDA can be equivalently casted as a new least-squares framework so as to significantly mitigate the computational overhead and scale to the data collections with higher dimension. Further, it is also found that appealing regularization techniques can be incorporated into the least-squares model to boost generalization accuracy. Experimental results on several popular multi-label benchmarks not only verify the established equivalence relationship, but also corroborate the effectiveness and efficiency of our proposed algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 156, 25 May 2015, Pages 221–230
نویسندگان
, , ,