کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407870 678236 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Locally multidimensional scaling by creating neighborhoods in diffusion maps
ترجمه فارسی عنوان
مقیاس محلی چند بعدی با ایجاد محله در نقشه های پخش
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper analyzes and improves an advanced multidimensional scaling method, known as locally multidimensional scaling, which assumes that high-dimensional data lie on a low-dimensional manifold. The method preserves local distances in the manifold by using classical scaling on a set of clusters in the high-dimensional data. These clusters are called neighborhoods, and the success of the method depends on the proper selection of these neighborhoods. At present, a neighborhood set is difficult to tune, and even if done well, the method may not function properly in dealing with noisy data. Our proposal utilizes clustering in a diffusion map, and thereby improves the original method in two ways. First, neighborhood selection is easier to tune, and second, the neighborhoods chosen enable the improved method to work under noisy data conditions. Our experiments demonstrate better tuning and robustness-to-noise results compared with the original method and some other existing multidimensional scaling methods on synthetic and real data sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 139, 2 September 2014, Pages 382–396
نویسندگان
, ,