کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407948 678238 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Apply extended self-organizing map to cluster and classify mixed-type data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Apply extended self-organizing map to cluster and classify mixed-type data
چکیده انگلیسی

Mixed numeric and categorical data are commonly seen nowadays in corporate databases in which precious patterns may be hidden. Analyzing mixed-type data to extract the hidden patterns valuable to decision-making is therefore beneficial and critical for corporations to remain competitive. In addition, visualization facilitates exploration in the early stage of data analysis. In the paper, we present a visualized approach to analyzing multivariate mixed-type data. The proposed framework based on an extended self-organizing map allows visualized data cluster analysis as well as classification. We demonstrate the feasibility of the approach by analyzing two real-world datasets and compare with other existing models to show its advantages.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 18, November 2011, Pages 3832–3842
نویسندگان
, , ,