کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
407948 | 678238 | 2011 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Apply extended self-organizing map to cluster and classify mixed-type data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Mixed numeric and categorical data are commonly seen nowadays in corporate databases in which precious patterns may be hidden. Analyzing mixed-type data to extract the hidden patterns valuable to decision-making is therefore beneficial and critical for corporations to remain competitive. In addition, visualization facilitates exploration in the early stage of data analysis. In the paper, we present a visualized approach to analyzing multivariate mixed-type data. The proposed framework based on an extended self-organizing map allows visualized data cluster analysis as well as classification. We demonstrate the feasibility of the approach by analyzing two real-world datasets and compare with other existing models to show its advantages.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 18, November 2011, Pages 3832–3842
Journal: Neurocomputing - Volume 74, Issue 18, November 2011, Pages 3832–3842
نویسندگان
Chung-Chian Hsu, Shu-Han Lin, Wei-Shen Tai,