کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408145 678250 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Time-series processing of large scale remote sensing data with extreme learning machine
ترجمه فارسی عنوان
پردازش سری زمانی از داده های سنجش از دور در مقیاس بزرگ با دستگاه یادگیری افراطی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Nowadays, land-cover change detection plays a more and more important role in environment protection and many other fields. However, the current land-cover change detection methods encounter the problems of low accuracy and low efficiency, especially in dealing with large scale remote sensing (RS) data. This paper presents a novel extreme learning machine (ELM) based land-cover change detection method with high testing accuracy and fast processing speed. The evaluation results show that ELM outperforms the traditional methods, e.g., SVM and BP network, in terms of training speed and generalization performance, when applied in land-cover classification. In our experiments, we apply our method to the analysis of rapid land use change in Taihu Lake region over the past decade.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 128, 27 March 2014, Pages 199–206
نویسندگان
, , , , , ,