کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408166 678250 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimizing principal component analysis performance for face recognition using genetic algorithm
ترجمه فارسی عنوان
بهینه سازی عملکرد تجزیه و تحلیل مولفه اصلی برای تشخیص چهره با استفاده از الگوریتم ژنتیک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Principal Component Analysis (PCA) turns out to be one of the most successful techniques in face recognition systems as a statistical method for dimensionality reduction. Even so, it is yet not optimal from the perspective of classification because the underlying distribution among different face classes in the image space is unpredicted and not known in advance. Besides, in practical applications, a question always raised on how much data should be included in the training. In this paper, a technique that associates genetic algorithm (GA) to PCA is proposed to maintain the property of PCA while enhancing the classification performance. It reconsiders the available training data and tries to find the best underlying distribution for classification. ORL, and Yale A databases have been used in the experiments to analyze and evaluate the performance of the proposed method compared to original PCA. The experiment results reveal that the proposed method outperforms PCA in terms of accuracy and classification time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 128, 27 March 2014, Pages 415–420
نویسندگان
, , ,