کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408450 679028 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local margin based semi-supervised discriminant embedding for visual recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Local margin based semi-supervised discriminant embedding for visual recognition
چکیده انگلیسی

Most manifold learning algorithms adopt the k nearest neighbors function to construct the adjacency graph. However, severe bias may be introduced in this case if the samples are not uniformly distributed in the ambient space. In this paper a semi-supervised dimensionality reduction method is proposed to alleviate this problem. Based on the notion of local margin, we simultaneously maximize the separability between different classes and estimate the intrinsic geometric structure of the data by both the labeled and unlabeled samples. For high-dimensional data, a discriminant subspace is derived via maximizing the cumulative local margins. Experimental results on high-dimensional classification tasks demonstrate the efficacy of our algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 5, February 2011, Pages 812–819
نویسندگان
, , ,