کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408450 | 679028 | 2011 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Local margin based semi-supervised discriminant embedding for visual recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Most manifold learning algorithms adopt the k nearest neighbors function to construct the adjacency graph. However, severe bias may be introduced in this case if the samples are not uniformly distributed in the ambient space. In this paper a semi-supervised dimensionality reduction method is proposed to alleviate this problem. Based on the notion of local margin, we simultaneously maximize the separability between different classes and estimate the intrinsic geometric structure of the data by both the labeled and unlabeled samples. For high-dimensional data, a discriminant subspace is derived via maximizing the cumulative local margins. Experimental results on high-dimensional classification tasks demonstrate the efficacy of our algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 5, February 2011, Pages 812–819
Journal: Neurocomputing - Volume 74, Issue 5, February 2011, Pages 812–819
نویسندگان
Feng Pan, Jiandong Wang, Xiaohui Lin,