کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
409460 | 679072 | 2006 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Stability in static delayed neural networks: A nonlinear measure approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, the global exponential stability is discussed for static recurrent neural networks. Without assuming the boundedness, monotonicity and differentiability of the activation functions, a new sufficient condition is obtained to ensure the existence and uniqueness of the equilibrium based on the nonlinear measure. Meanwhile, the condition obtained also guarantees the global exponential stability of the delayed neural networks via constructing a proper Lyapunov functional. The results, which are independent of the time delay, can be checked easily by convex optimization algorithms. In the end of this paper, two illustrative examples are also given to show the effectiveness of our results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 13–15, August 2006, Pages 1776–1781
Journal: Neurocomputing - Volume 69, Issues 13–15, August 2006, Pages 1776–1781
نویسندگان
Ping Li, Jinde Cao,