کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
409600 679080 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network
ترجمه فارسی عنوان
یک روش کالیبراسیون برای افزایش دقت ربات از طریق ادغام یک الگوریتم فیلتر پیشرفته کلاینمن و یک شبکه عصبی مصنوعی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Robot position accuracy plays an important role in advanced industrial applications. In this paper, a new calibration method for enhancing robot position accuracy is proposed. In order to improve robot accuracy, the method first models and identifies its geometric parameters using an extended Kalman filtering (EKF) algorithm. Because the non-geometric error sources (such as the link deflection errors, joint compliance errors, gear backlash, and so on) are either difficult or impossible to model correctly and completely, an artificial neural network (ANN) will be applied to compensate for these un-modeled errors. The combination of model-based identification of the robot geometric errors using EKF and a compensation technique using the ANN could be an effective solution for the correction of all robot error sources. In order to demonstrate the effectiveness and correctness of the proposed method, simulated and experimental studies are carried out on serial PUMA and HH800 manipulators, respectively. The enhanced position accuracy of the robots after calibration confirms the practical effectiveness and correctness of the method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 151, Part 3, 3 March 2015, Pages 996–1005
نویسندگان
, , ,