کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410193 679130 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discriminative learning by sparse representation for classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Discriminative learning by sparse representation for classification
چکیده انگلیسی

Recently, sparsity preserving projections (SPP) algorithm has been proposed, which combines l1-graph preserving the sparse reconstructive relationship of the data with the classical dimensionality reduction algorithm. However, when applied to classification problem, SPP only focuses on the sparse structure but ignores the label information of samples. To enhance the classification performance, a new algorithm termed discriminative learning by sparse representation projections or DLSP for short is proposed in this paper. DLSP algorithm incorporates the merits of both local interclass geometrical structure and sparsity property. That makes it possess the advantages of the sparse reconstruction, and more importantly, it has better capacity of discrimination, especially when the size of the training set is small. Extensive experimental results on serval publicly available data sets show the feasibility and effectiveness of the proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issues 12–13, June 2011, Pages 2176–2183
نویسندگان
, ,