کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410693 679160 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
XML document classification based on ELM
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
XML document classification based on ELM
چکیده انگلیسی

In this paper, we describe an XML document classification framework based on extreme learning machine (ELM). On the basis of Structured Link Vector Model (SLVM), an optimized Reduced Structured Vector Space Model (RS-VSM) is proposed to incorporate structural information into feature vectors more efficiently and optimize the computation of document similarity. We apply ELM in the XML document classification to achieve good performance at extremely high speed compared with conventional learning machines (e.g., support vector machine). A voting-ELM algorithm is then proposed to improve the accuracy of ELM classifier. Revoting of Equal Votes (REV) method and Revoting of Confusing Classes (RCC) method are also proposed to postprocess the voting result of v-ELM and further improve the performance. The experiments conducted on real world classification problems demonstrate that the voting-ELM classifiers presented in this paper can achieve better performance than ELM algorithms with respect to precision, recall and F-measure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 16, September 2011, Pages 2444–2451
نویسندگان
, , , , ,