کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
410705 679160 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Testing correct model specification using extreme learning machines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Testing correct model specification using extreme learning machines
چکیده انگلیسی

Testing the correct model specification hypothesis for artificial neural network (ANN) models of the conditional mean is not standard. The traditional Wald, Lagrange multiplier, and quasi-likelihood ratio statistics weakly converge to functions of Gaussian processes, rather than to convenient chi-squared distributions. Also, their large-sample null distributions are problem dependent, limiting applicability. We overcome this challenge by applying functional regression methods of Cho et al. [8] to extreme learning machines (ELM). The Wald ELM (WELM) test statistic proposed here is easy to compute and has a large-sample standard chi-squared distribution under the null hypothesis of correct specification. We provide associated theory for time-series data and affirm our theory with some Monte Carlo experiments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 16, September 2011, Pages 2552–2565
نویسندگان
, ,