کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
411721 679589 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global mutual information-based feature selection approach using single-objective and multi-objective optimization
ترجمه فارسی عنوان
رویکرد انتخاب بین المللی مبتنی بر اطلاعات بین المللی با استفاده از بهینه سازی تک هدفمند و چند هدفه
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Feature selection is an important preprocessing step in data mining. Mutual information-based feature selection is a kind of popular and effective approaches. In general, most existing mutual information-based techniques are greedy methods, which are proven to be efficient but suboptimal. In this paper, mutual information-based feature selection is transformed into a global optimization problem, which provides a new idea for solving feature selection problems. First, a single-objective feature selection algorithm combining relevance and redundancy is presented, which has well global searching ability and high computational efficiency. Furthermore, to improve the performance of feature selection, we propose a multi-objective feature selection algorithm. The method can meet different requirements and achieve a tradeoff among multiple conflicting objectives. On this basis, a hybrid feature selection framework is adopted for obtaining a final solution. We compare the performance of our algorithm with related methods on both synthetic and real datasets. Simulation results show the effectiveness and practicality of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 168, 30 November 2015, Pages 47–54
نویسندگان
, ,