کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
412138 679613 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recovery analysis for adaptive learning from non-stationary data streams: Experimental design and case study
ترجمه فارسی عنوان
تجزیه و تحلیل بازیابی برای یادگیری سازگار از جریان داده های غیر ثابت: طراحی تجربی و مطالعه موردی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The extension of machine learning methods from static to dynamic environments has received increasing attention in recent years; in particular, a large number of algorithms for learning from so-called data streams has been developed. An important property of dynamic environments is non-stationarity, i.e., the assumption of an underlying data generating process that may change over time. Correspondingly, the ability to properly react to so-called concept change is considered as an important feature of learning algorithms. In this paper, we propose a new type of experimental analysis, called recovery analysis, which is aimed at assessing the ability of a learner to discover a concept change quickly, and to take appropriate measures to maintain the quality and generalization performance of the model. We develop recovery analysis for two types of supervised learning problems, namely classification and regression. Moreover, as a practical application, we make use of recovery analysis in order to compare model-based and instance-based approaches to learning on data streams.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 150, Part A, 20 February 2015, Pages 250–264
نویسندگان
, ,