کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417476 681524 2013 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust minimum information loss estimation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Robust minimum information loss estimation
چکیده انگلیسی

Two robust estimators of a matrix-valued location parameter are introduced and discussed. Each is the average of the members of a subsample–typically of covariance or cross-spectrum matrices–with the subsample chosen to minimize a function of its average. In one case this function is the Kullback–Leibler discrimination information loss incurred when the subsample is summarized by its average; in the other it is the determinant, subject to a certain side condition. For each, the authors give an efficient computing algorithm, and show that the estimator has, asymptotically, the maximum possible breakdown point. The main motivation is the need for efficient and robust estimation of cross-spectrum matrices, and they present a case study in which the data points originate as multichannel electroencephalogram recordings but are then summarized by the corresponding sample cross-spectrum matrices.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 65, September 2013, Pages 98–112
نویسندگان
, , ,