کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418132 681615 2007 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kernel logistic PLS: A tool for supervised nonlinear dimensionality reduction and binary classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Kernel logistic PLS: A tool for supervised nonlinear dimensionality reduction and binary classification
چکیده انگلیسی

“Kernel logistic PLS” (KL-PLS) is a new tool for supervised nonlinear dimensionality reduction and binary classification. The principles of KL-PLS are based on both PLS latent variables construction and learning with kernels. The KL-PLS algorithm can be seen as a supervised dimensionality reduction (complexity control step) followed by a classification based on logistic regression. The algorithm is applied to 11 benchmark data sets for binary classification and to three medical problems. In all cases, KL-PLS proved its competitiveness with other state-of-the-art classification methods such as support vector machines. Moreover, due to successions of regressions and logistic regressions carried out on only a small number of uncorrelated variables, KL-PLS allows handling high-dimensional data. The proposed approach is simple and easy to implement. It provides an efficient complexity control by dimensionality reduction and allows the visual inspection of data segmentation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 9, 15 May 2007, Pages 4083–4100
نویسندگان
, , , , , ,