کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
429390 | 687536 | 2014 | 14 صفحه PDF | دانلود رایگان |
The non-dominate sorting genetic algorithmic-II (NSGA-II) is an effective algorithm for finding Pareto-optimal front for multi-objective optimization problems. To further enhance the advantage of the NSGA-II, this study proposes an evaluative-NSGA-II (E-NSGA-II) in which a novel gene-therapy method incorporates into the crossover operation to retain superior schema patterns in evolutionary population and enhance its solution capability. The merit of each select gene in a crossover chromosome is estimated by exchanging the therapeutic genes in both mating chromosomes and observing their fitness differentiation. Hence, the evaluative crossover operation can generate effective genomes based on the gene merit without explicitly analyzing the solution space. Experiments for nine unconstrained multi-objective benchmarks and four constrained problems show that E-NSGA-II can find Pareto-optimal solutions in all test cases with better convergence and diversity qualities than several existing algorithms.
Journal: Journal of Computational Science - Volume 5, Issue 2, March 2014, Pages 170–183