کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4305029 | 1288522 | 2006 | 8 صفحه PDF | دانلود رایگان |

Ischemia/reperfusion (I/R) injury triggered by pathogenic processes, such as organ transplant dysfunction, stroke, myocardial infarction, and shock, stimulate both immune and inflammatory pathways. Inflammatory cell activation and cytotoxic cytokine expression are associated with reperfusion injury. The activation of these inflammatory mediators initiates several interconnected downstream cascades regulated by phosphorylation and dephosphorylation reactions. These complex phosphorylation-dependent signal transduction pathways ultimately initiate nuclear transcription of inflammatory as well as anti-inflammatory genes to repair and assist in the recovery of damaged cells. Radical oxygen species (ROS) production, under ischemic conditions, initiates a cascade of events regulated by phosphorylation/dephosphorylation reactions and inflammatory gene expression. This is a review of the current understanding of the phosphoregulatory mechanisms that mediate the complex processes of signal transduction secondary to I/R injury. The rationale for inhibiting or activating signaling pathways as a promising molecular target for ameliorating reperfusion injury in I/R-related diseases, such as stroke, myocardial infarction, and storage for transplantation, is discussed on the basis of a new understanding of the mechanisms modulating phosphoregulatory pathways. In addition, we present part of our ongoing research in this field with phosphoregulatory signal transduction and its potential application.
Journal: Journal of Surgical Research - Volume 134, Issue 2, August 2006, Pages 292–299