کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4343527 | 1615106 | 2015 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Inhibition of histone deacetylases enhances the function of serotoninergic neurons in organotypic raphe slice cultures
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Inhibition of histone deacetylases (HDACs) is a promising approach for the treatment of mood disorders. However, the effects of HDAC inhibition on the serotonin (5-HT) system, a common target for psychiatric disorders, are poorly understood. Here, we show that a broad-spectrum HDAC inhibitor, trichostatin A (TSA), enhances the function of 5-HT neurons in organotypic raphe slice cultures. Sustained treatment with TSA (1 μM) for 2 or 4 days significantly increased the 5-HT tissue content and tryptophan hydroxylase 2 (TPH2) expression, which were accompanied by hyper-acetylation of histone H3 in the promoter region of the TPH2 gene. TSA treatment for 4 days increased the extracellular 5-HT level, which was significantly suppressed in the presence of the selective AMPA receptor (AMPAR) antagonist NBQX. Moreover, the expression of both the AMPAR subunit GluA2 and Ca2+/calmodulin-dependent kinase II α (CaMKIIα) mRNAs were significantly increased by TSA treatment. Co-treatment with the CaMKII inhibitors KN-62 and KN-93 prevented the TSA-induced increase in 5-HT release, but had no effect on the increases in 5-HT tissue content. These results suggest that inhibition of HDACs increases 5-HT synthesis and release by epigenetic mechanisms, and that 5-HT release is mediated by the enhancement of AMPAR-mediated excitatory inputs and CaMKII signaling.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience Letters - Volume 593, 23 April 2015, Pages 72-77
Journal: Neuroscience Letters - Volume 593, 23 April 2015, Pages 72-77
نویسندگان
Nozomi Asaoka, Kazuki Nagayasu, Naoya Nishitani, Mayumi Yamashiro, Hisashi Shirakawa, Takayuki Nakagawa, Shuji Kaneko,