کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4357965 | 1300117 | 2007 | 8 صفحه PDF | دانلود رایگان |

Soil salinization has become a severe global problem and salinity is one of the most severe abiotic stresses inhibiting growth and survival of mycorrhizal fungi and their host plants. Salinity tolerance of ectomycorrhizal fungi and survival of ectomycorrhizal inocula is essential to reforestation and ecosystem restoration in saline areas. Proteomic changes of an ectomycorrhizal fungus, Boletus edulis, when exposed to salt stress conditions (4 % NaCl, w/v) were determined using two-dimensional electrophoresis (2DE) and mass spectrometry (MS) techniques. Twenty-two protein spots, 14 upregulated and 8 downregulated, were found changed under salt stress conditions. Sixteen changed protein spots were identified by nanospray ESI Q-TOF MS/MS and liquid chromatography MS/MS. These proteins were involved in biosynthesis of methionine and S-adenosylmethionine, glycolysis, DNA repair, cell cycle control, and general stress tolerance, and their possible functions in salinity adaptation of Boletus edulis were discussed.
Journal: Mycological Research - Volume 111, Issue 8, August 2007, Pages 939–946