کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
436085 689969 2015 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the proper orientation number of bipartite graphs
ترجمه فارسی عنوان
در تعداد جهت گیری مناسب نمودارهای دو طرفه
کلمات کلیدی
جهت گیری مناسب، رنگ آمیزی نمودار، گراف دو طرفه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

An orientation of a graph G is a digraph D obtained from G   by replacing each edge by exactly one of the two possible arcs with the same endvertices. For each v∈V(G)v∈V(G), the indegree of v in D  , denoted by dD−(v), is the number of arcs with head v in D. An orientation D of G is proper   if dD−(u)≠dD−(v), for all uv∈E(G)uv∈E(G). The proper orientation number of a graph G  , denoted by χ→(G), is the minimum of the maximum indegree over all its proper orientations. In this paper, we prove that χ→(G)≤(Δ(G)+Δ(G))/2+1 if G   is a bipartite graph, and χ→(G)≤4 if G   is a tree. It is well-known that χ→(G)≤Δ(G), for every graph G  . However, we prove that deciding whether χ→(G)≤Δ(G)−1 is already an NPNP-complete problem on graphs with Δ(G)=kΔ(G)=k, for every k≥3k≥3. We also show that it is NPNP-complete to decide whether χ→(G)≤2, for planar subcubic graphs G  . Moreover, we prove that it is NPNP-complete to decide whether χ→(G)≤3, for planar bipartite graphs G with maximum degree 5.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 566, 9 February 2015, Pages 59–75
نویسندگان
, , , , ,