کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4364971 | 1616333 | 2013 | 8 صفحه PDF | دانلود رایگان |

• The potential of Trametes versicolor a white rot fungi is exploited for biopulping of oil palm biomass.
• Lignocellulytic enzymes are synthesized that cause lignin elimination.
• The changes in Kappa number, pulp yield are studied.
• The strength of hand sheets was examined.
• The performance of the fungi is excellent and it is suitable for industrial application.
The objective of the research was to investigate the suitability of the white-rot fungus Trametes versicolor for biopulping using oil palm biomass as the substrate. Fungi are grown on solid-state cultures Kirk's enrichment media to determine the lignocellulolytic activities. Samples subjected to fungal pretreatment for periods of 1, 2, 3, and 4 weeks were investigated and compared to the untreated control. The crude enzyme extracts were assayed using specific substrates and enzyme activities were calculated. The highest level of laccase activity was 218.66 U/L; the peak activity of manganese peroxidase was 162.10 U/L, and lignin peroxidase is 42.56 U/L. The activity levels of cellulase and hemicellulase were insignificant in all extracts (53.30 and 1.50 U/L, respectively). When the chips were pulped mechanically the Kappa number, pulp yield, and screened pulp yield decreased significantly and paper strength increased marginally with the exposure time. Hand sheet properties were also improved significantly by fungal treatment. Weight loss, lignin loss, cellulose, and holocellulose loss were 8.45%, 9.35%, 4.58%, and 7.2%, respectively. Images from SEM seem to indicate a simultaneous type of decay pattern involving cell wall breakdown combined with lignin modification. Considering all its pulping and papermaking properties, the performance of T. versicolor is good and has potential for use in large-scale biotechnological processes.
Journal: International Biodeterioration & Biodegradation - Volume 82, August 2013, Pages 96–103