کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4372938 | 1617138 | 2016 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques
ترجمه فارسی عنوان
بررسی شاخص های کلی تاثیر گذار بر آتش سوزی جنگل و مدل سازی حساسیت آن با استفاده از تکنیک های مختلف داده کاوی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی
BRT, GAM, and RF data mining models were used to distinguish between presence and absence of forest fires and its mapping. These algorithms were used to perform feature selection in order to reveal the variables that contribute more to forest fire occurrence. Finally, for validation of models, the area under the curve (AUC) for forest fire susceptibility maps was calculated. The validation of results showed that AUC for three mentioned models varies from 0.7279 to 0.8770 (AUCBRTÂ =Â 80.84%, AUCGAMÂ =Â 87.70%, and AUCRFÂ =Â 72.79%,). Results indicated that the main drivers of forest fire occurrence were annual rainfall, distance to roads, and land use factors. The results can be applied to primary warning, fire suppression resource planning, and allocation work.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Indicators - Volume 64, May 2016, Pages 72-84
Journal: Ecological Indicators - Volume 64, May 2016, Pages 72-84
نویسندگان
Zohre Sadat Pourtaghi, Hamid Reza Pourghasemi, Roberta Aretano, Teodoro Semeraro,