کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4388660 1618009 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Biogeochemical modelling of in situ biodegradation and stable isotope fractionation of intermediate chloroethenes in a horizontal subsurface flow wetland
ترجمه فارسی عنوان
مدلسازی بیوگرافی شیمیایی تجزیه بیولوژیکی در منطقه و تجزیه ایزوتوپ پایدار از کلروفن های متوسط ​​در یک تالاب افقی زیرسطحی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی

The use of wetlands as a bioremediation treatment technology for halogenated hydrocarbons has recently gained interest. However, the impact of biogeochemical dynamics over a wetland's life-span on contaminant removal remains poorly understood. Based on the results of a constructed wetland experiment, we established a reactive transport model (RTM) that includes the transition from oxidation to reductive dehalogenation of cis-1,2-dichloroethene (cDCE) and corresponding carbon isotope signatures to quantify removal pathways in wetland environments. cDCE was removed during the entire life-span of the wetland despite significant changes in its biogeochemistry. Model results showed that during the oxic phase, 88% of cDCE throughput was removed, with oxidative cDCE mineralization accounting for 53.3 mg m−2 d−1 (45%) and carbon isotope enrichment factors ranging from ɛDCE-Oxid =−1 to − 4.0 ‰. During the anoxic phase, the wetland removed 85% of cDCE mainly by volatilization and reductive dehalogenation (εDCE−Dehal=−32   to   −36‰)εDCE−Dehal=−32   to   −36‰, with the latter degrading 21.3 mg m−2 d−1 of cDCE (28%) and producing 13.7 mg m−2 d−1 of vinyl chloride (VC). cDCE oxidation (εDCE-Oxid=−9.4   to   −11.5‰)εDCE-Oxid=−9.4   to   −11.5‰ accounted for only 9.1 mg m−2 d−1 (12%). 4.4 mg m−2 d−1 of the VC produced in the wetland was biodegraded via oxidation (32%), while 2.8 mg m−2 d−1 (20%) was converted into non-toxic ethene via dehalogenation. Plant uptake of cDCE accounted for up to 23% of the mass removal during the oxic phase and 16% during the anoxic phase (6% for VC). Altogether, the RTM enables a mechanistic representation and quantitative prediction of the fate of intermediate chloroethenes in redox-dynamic environments such as wetlands.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Engineering - Volume 90, May 2016, Pages 170–179
نویسندگان
, , , , ,