کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4393285 | 1618269 | 2013 | 7 صفحه PDF | دانلود رایگان |

In arid and semiarid rangelands, soil erosion has been widely considered an important soil degradation process and one of the main factors responsible for declining soil fertility. In this study, we determined the sediment production and the enrichment ratios of clay, organic C, and total N by using rainfall simulations on runoff plots (0.60 × 1.67 m) in three plant communities of northeastern Patagonia: grass (GS), degraded grass with scattered shrubs (DGS), and degraded shrub steppes (DSS). Our results clearly indicate that spatial variability in soil loss rate and enrichment process exists as a result of the local differences in both plant composition and soil surface characteristics. Sediment production was significantly lower in the GS (14.2 g m−2) compared with the DGS and DSS (38.2 and 51.5 g m−2, respectively). In the GS, the enrichment ratio of clay was significantly greater (3.9) and enrichment ratio of organic C was lower (3.1) than in the DGS and the DSS, though differences in enrichment ratios of total N were not significant. The high rate of soil loss and nutrients through overland-flow may limit the opportunities that promote the pathway from DGS back to GS community, favoring the dominance of shrubs.
► We quantify erosion rate and enrichment ratios by using rainfall simulations.
► Soil loss and enrichment ratios showed spatial heterogeneity at landscape scale.
► Degraded shrublands showed greater soil loss and enrichment ratio than grasslands.
► Vegetation and soil quality explained the differences in selective erosion.
► We identified plant communities at risk of irreversible soil degradation.
Journal: Journal of Arid Environments - Volume 88, January 2013, Pages 43–49