کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4402094 1618617 2015 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using Bootstrap Methods to Investigate Coefficient Non-stationarity in Regression Models: An Empirical Case Study
ترجمه فارسی عنوان
با استفاده از روشهای بوت استرپ برای بررسی عدم قطعیتی ضریب رگرسیون در مدل های رگرسیون: مطالعه مورد تجربی یک؟
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بوم شناسی
چکیده انگلیسی

In this study, parametric bootstrap methods are used to test for spatial non-stationarity in the coefficients of regression models (i.e. test for relationship non-stationarity). Such a test can be rather simply conducted by comparing a model such as geographically weighted regression (GWR) as an alternative to a standard regression, the null hypothesis. However here, three spatially autocorrelated regressions are also used as null hypotheses: (i) a simultaneous autoregressive error model; (ii) a moving average error model; and (iii) a simultaneous autoregressive lag model. This expansion of null hypotheses, allows an investigation as to whether the spatial variation in the coefficients obtained using GWR could be attributed to some other spatial process, rather than one depicting non-stationary relationships. In this short presentation, the bootstrap approach is applied empirically to an educational attainment data set for Georgia, USA. Results suggest value in the bootstrap approach, providing a more informative test than any related test that is commonly applied.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Environmental Sciences - Volume 27, 2015, Pages 112-115