کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4423049 1619082 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A framework for identifying distinct multipollutant profiles in air pollution data
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
A framework for identifying distinct multipollutant profiles in air pollution data
چکیده انگلیسی

BackgroundThe importance of describing, understanding and regulating multi-pollutant mixtures has been highlighted by the US National Academy of Science and the Environmental Protection Agency. Furthering our understanding of the health effects associated with exposure to mixtures of pollutants will lead to the development of new multi-pollutant National Air Quality Standards.ObjectivesIntroduce a framework within which diagnostic methods that are based on our understanding of air pollution mixtures are used to validate the distinct air pollutant mixtures identified using cluster analysis.MethodsSix years of daily gaseous and particulate air pollution data collected in Boston, MA were classified solely on their concentration profiles. Classification was performed using k-means partitioning and hierarchical clustering. Diagnostic strategies were developed to identify the most optimal clustering.ResultsThe optimal solution used k-means analysis and contained five distinct groups of days. Pollutant concentrations and elemental ratios were computed in order to characterize the differences between clusters. Time-series regression confirmed that the groups differed in their chemical compositions. The mean values of meteorological parameters were estimated for each group and air mass origin between clusters was examined using back-trajectory analysis. This allowed us to link the distinct physico-chemical characteristics of each cluster to characteristic weather patterns and show that different clusters were associated with distinct air mass origins.ConclusionsThis analysis yielded a solution that was robust to outlier points and interpretable based on chemical, physical and meteorological characteristics. This novel method provides an exciting tool with which to identify and further investigate multi-pollutant mixtures and link them directly to health effects studies.


► We present a novel framework for identifying multi-pollutant profiles at a single sampling site.
► Daily data collected from 2004 to 2009 was grouped using k-means and hierarchical cluster analysis.
► The validity of the solutions was determined using the pollutant means, ratios and weather parameters.
► Back-trajectory analysis confirmed that origin of the air masses in each cluster was different.
► Sensitivity analysis confirmed that clustering was not driven by outlier points in the data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environment International - Volume 45, 15 September 2012, Pages 112–121
نویسندگان
, , , ,