کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4428756 1619803 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Long-term seasonal trends of nitrogen, phosphorus, and suspended sediment load from the non-tidal Susquehanna River Basin to Chesapeake Bay
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Long-term seasonal trends of nitrogen, phosphorus, and suspended sediment load from the non-tidal Susquehanna River Basin to Chesapeake Bay
چکیده انگلیسی

Reduction of nitrogen (N), phosphorus (P), and suspended sediment (SS) load has been a principal focus of Chesapeake Bay Watershed management for decades. To evaluate the progress of management actions in the Bay's largest tributary, the Susquehanna River, we analyzed the long-term seasonal trends of flow-normalized N, P, and SS load over the last two to three decades, both above and below the Lower Susquehanna River Reservoir System. Our results indicate that annual and decadal-scale trends of nutrient and sediment load generally followed similar patterns in all four seasons, implying that changes in watershed function and land use had similar impacts on nutrient and sediment load at all times of the year. Above the reservoir system, the combined loads from the Marietta and Conestoga Stations indicate general trends of N, P, and SS reduction in the Susquehanna River Basin, which can most likely be attributed to a suite of management actions on point, agricultural, and stormwater sources. In contrast, upward trends of SS and particulate-associated P and N were generally observed below the Conowingo Reservoir since the mid-1990s. Our analyses suggest that (1) the reservoirs' capacity to trap these materials has been diminishing over the past two to three decades, and especially so for SS and P since the mid-1990s, and that (2) the Conowingo Reservoir has already neared its sediment storage capacity. These changes in reservoir performance will pose significant new kinds of challenges to attainment of total maximum daily load goals for the Susquehanna River Basin, and particularly if also accompanied by increases in storm frequency and intensity due to climate change. Accordingly, the reservoir issue may need to be factored into the proper establishment of regulatory load requirements and the development of watershed implementation plans.


► Flow-normalized loads of N, P, and SS from the Susquehanna River were evaluated.
► SS and particulate-bound P and N from the Susquehanna to Chesapeake Bay are rising.
► N, P, and SS loads have declined in the Susquehanna River above its major reservoirs.
► The Conowingo Reservoir has neared its capacity to trap SS and particulate P and N.
► The reservoir will pose challenges to attainment of nutrient and sediment reduction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volumes 452–453, 1 May 2013, Pages 208–221
نویسندگان
, , ,