کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4430042 1619843 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed
چکیده انگلیسی

Excess nutrients and agrochemicals from non-point sources contribute to water quality impairment in the Chesapeake Bay watershed and their loading rates are related to land use, agricultural practices, hydrology, and pollutant fate and transport processes. In this study, monthly baseflow stream samples from 15 agricultural subwatersheds of the Choptank River in Maryland USA (2005 to 2007) were characterized for nutrients, herbicides, and herbicide transformation products. High-resolution digital maps of land use and forested wetlands were derived from remote sensing imagery. Examination of landscape metrics and water quality data, partitioned according to hydrogeomorphic class, provided insight into the fate, delivery, and transport mechanisms associated with agricultural pollutants. Mean Nitrate-N concentrations (4.9 mg/L) were correlated positively with percent agriculture (R2 = 0.56) and negatively with percent forest (R2 = 0.60). Concentrations were greater (p = 0.0001) in the well-drained upland (WDU) hydrogeomorphic region than in poorly drained upland (PDU), reflecting increased denitrification and reduced agricultural land use intensity in the PDU landscape due to the prevalence of hydric soils. Atrazine and metolachlor concentrations (mean 0.29 μg/L and 0.19 μg/L) were also greater (p = 0.0001) in WDU subwatersheds than in PDU subwatersheds. Springtime herbicide concentrations exhibited a strong, positive correlation (R2 = 0.90) with percent forest in the WDU subwatersheds but not in the PDU subwatersheds. In addition, forested riparian stream buffers in the WDU were more prevalent than in the PDU where forested patches are typically not located near streams, suggesting an alternative delivery mechanism whereby volatilized herbicides are captured by the riparian forest canopy and subsequently washed off during rainfall. Orthophosphate, CIAT (6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine), CEAT (6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine), and MESA (2-[(2-ethyl-6-methylphenyl) (2-methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid) were also analyzed. These findings will assist efforts in targeting implementation of conservation practices to the most environmentally-critical areas within watersheds to achieve water quality improvements in a cost-effective manner.

Research highlights
► Water quality and landuse of 15 Choptank River subwatersheds were characterized.
► Nitrate-N positively correlated with % agriculture and negatively with % forest.
► Increased denitrification in the poorly drained uplands due to hydric soils.
► Springtime herbicide concentrations were correlated positively with % forest.
► Evidence of capture of herbicide drift by the riparian forest canopy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volume 409, Issue 19, 1 September 2011, Pages 3866–3878
نویسندگان
, , , , , , , , , , , , ,