کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4432014 | 1619912 | 2008 | 11 صفحه PDF | دانلود رایگان |

In order to define the naturally-occurring radioactive materials that are the source of radon in natural environments, a comprehensive analytical (geochemical, physical and chemical) methodology was employed to study sand samples from the Hollola esker in the city of Hollola (Lahti area, Finland). Techniques such as gamma-spectrometry, emanation measurements, sequential chemical extraction, scanning electron microscopy (SEM), electron probe microanalyses (EPMA) and inductively-coupled plasma mass spectrometry (ICP-MS) were used to determine the potential source of radon. Monazite and xenotime, uranium- and thorium-bearing minerals and potential radon sources, occurred in significant amounts in the samples and were also the main reason for the distribution of uranium and thereby radium in separate grain-size fractions. Following deposition, the esker sand has been exposed to no significant weathering, and radium has not therefore been much separated from uranium. However, considering its non-compatibility with crystal lattices, it was recognized rather in easily leachable species (44% of the total 226Ra) than uranium (21% of the total 238U) in our analyses. The smallest grain-size fraction of the esker sand had a higher emanation power (0.24) than the other fractions (around 0.17). Due to the small relative proportion of this fraction, however, it contributed only slightly to the total emanation (4%). The emanation power of the leachable species was about three times higher (ca. 0.20) than that of the species tightly bound to the crystal lattice (ca. 0.07).
Journal: Science of The Total Environment - Volume 405, Issues 1–3, 1 November 2008, Pages 129–139