کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4435550 1620221 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of NO2 in exhaust gas from an oxyfuel combustion system on the cap rock of a proposed CO2 injection site
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Effect of NO2 in exhaust gas from an oxyfuel combustion system on the cap rock of a proposed CO2 injection site
چکیده انگلیسی


• Compared to SO2, NO2 in injected CO2 may cause the cap-rock.
• We conducted experiments on the effect of dissolved NO2 or SO2 in CO2 on shale.
• We postulated Fe is buffering the pH by redox reaction with nitrate from NO2.
• Amount of precipitated Ca and Fe is the most with a high concentration of NO2 in CO2.
• The effect of low concentration of NO2 on shaly cap-rock and solution pH is minimal.

A laboratory geochemical study was conducted using a drill core sample of cap rock from the Surat Basin, Australia, to investigate the effect of NO2 contained in the CO2 gas exhausted from the oxyfuel combustion process (oxyfuel combustion CO2) on the cap rock. A gas (CO2 containing NO2) was prepared to simulate the exhaust gas produced from the oxyfuel combustion process. Two types of gases (pure CO2 and CO2 containing SO2) were also prepared as reference gases. The effect of NO2 on cap rock was studied experimentally using these gases. No differences in the amounts of leached ions and pH changes for CO2 containing NO2 (36 ppmv), pure CO2, and CO2 containing SO2 (35 ppmv) existed. The pH values decreased immediately after CO2 gas injection but increased with time as a result of mineral buffering. Leaching of Fe, Mg, Ca, and K was suggested to have occurred as the result of dissolution of Fe-chlorite, prehnite and illite-smectite mixed layer clay in the shale sample. The amounts of Ca, Fe, and Mg leached with CO2 containing NO2 (318 ppmv) were higher than those for pure CO2. For the mixture containing 318 ppmv NO2, the pH increased more than that for the other gas conditions immediately after the pH fall at the start of the experiment, because oxidation-reduction reactions occurred between Fe2+ and NO3−. Moreover, the results indicated that some of the leached Ca and Fe were deposited on the shale sample because of the pH increase. Therefore, we concluded that the effects of NO2 on mineral dissolution and pH changes of formation water are negligible when oxyfuel combustion CO2 containing about 30 ppmv of NO2 is injected into an underground aquifer. In addition, even if about 300 ppmv NO2 is accidentally injected into the underground aquifer, mineral dissolution is suppressed due to the buffering of pH decrease after gas injection.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Geochemistry - Volume 70, July 2016, Pages 17–26
نویسندگان
, , , , , ,