کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4436342 | 1310677 | 2011 | 11 صفحه PDF | دانلود رایگان |

This paper mainly describes mineralogy and geochemistry of coals from the Weibei coalfield in the southeastern Ordos Basin, North China. A number of Al-hydroxide/oxyhydroxide minerals were detected in the Late Carboniferous coals (Nos. 5, 10 and 11 coals), especially in the No. 10 coal. Aluminum-hydroxide/oxyhydroxide minerals (nordstrandite, boehmite and diaspore) in the No. 10 coal are associated with kaolinite, suggesting that these minerals are derived from the breakdown of kaolinite. A model in which Al-hydroxide/oxyhydroxide minerals form from the incongruent dissolution of kaolinite is presented. Nordstrandite and boehmite mainly occur as massive lenses (<500 μm in length). Diaspore appears as massive aggregates and as single euhedral crystals (<50 μm in length) in a kaolinite matrix. The presence of high temperature quartz, and zircon indicates that there was input of felsic volcanic debris during accumulation of the Late Carboniferous coals. These volcanic materials have also had a significant influence on the enrichment of certain trace elements including Li, Be, Ga, Zr, Nb, Mo, Sn, W and U in the Late Carboniferous coals (Nos. 5, 10, and 11 coals). SEM-EDX results show that Ga in the No. 10 coal (whole coal average 33.4 μg/g; n = 2) mainly occurs within Al-hydroxide/oxyhydroxide minerals (nordstrandite, boehmite, and diaspore), kaolinite and organic matter.
► There is felsic volcanic input into the Late Carboniferous coals from the Weibei coalfield.
► Al-hydroxide/oxyhydroxide minerals are derived from the incongruent dissolution of kaolinite.
► Al-hydroxide/oxyhydroxide minerals are responsible for higher Ga and lower Si2O/Al2O3.
Journal: Applied Geochemistry - Volume 26, Issue 7, July 2011, Pages 1086–1096