کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4436507 1310683 2011 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Human impacts on soils: Tipping points and knowledge gaps
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Human impacts on soils: Tipping points and knowledge gaps
چکیده انگلیسی

Soil ecosystem functions are derived from plant, animal and microorganism communities and the non-living environment interacting as a unit. Human activities have affected soil ecosystem functions and in many cases caused soil ecosystem collapse. This review provides a synthesis of current knowledge of human impacts on soil ecosystems, with a special focus on knowledge gaps regarding soil ecosystem shifts and tipping points, using the island of Crete, Greece as an example. Soil ecosystem shifts are abrupt changes that occur at “tipping points” and have long-lasting effects on the landscape and both the biotic and abiotic structure of the soil. These shifts can occur due to climate change, land use change, fertilization, or above-ground biodiversity decline. The environmental pressures in the agricultural land of Crete, place the island very close to tipping points, and make it an “ideal” area for soil ecosystem shifts. Reversing the trend of the shift while using the soil ecosystem services, means that significantly more organic matter needs to be added to the soil compared to the amount added under set-aside conditions. Potential nutrient supply and demand calculations indicate that fertilizer demand in Crete can be satisfied by recycling of bio-residue and livestock excreta produced on the island. Soil fertility improves faster if, in addition to bio-fertilization, farmers use traditional agricultural practices such as crop rotations and legume row plantings within olive trees and orchards. A renewed soil fertility paradigm shift requires a “holistic” management of biotic-soil–water resources in order to provide sufficient and an appropriate type of organic matter to the plant–microorganism system to maximize food production.


► Evidence suggesting impeding soil ecosystem shift in areas impacted by climate change.
► Maintaining soil ecosystem services requires substantial input of organic matter.
► Holistic management ensures soil fertility and sustainable food production.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Geochemistry - Volume 26, Supplement, June 2011, Pages S230–S233
نویسندگان
,