کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4436569 | 1310684 | 2012 | 7 صفحه PDF | دانلود رایگان |

The applicability of equilibrium models for humic-bound transport of toxic or radioactive metals is affected by kinetic processes leading to an increasing inertness of metal–humic complexes. The chemical background is not yet understood. It is widely believed that bound metals undergo an in-diffusion process within the humic colloids, changing from weaker to stronger binding sites. This work is focussed on the competition effect of Al(III) on complexation of Tb(III) or Eu(III) as analogues of trivalent actinides. By using ion exchange and spectroscopic methods, their bound fractions were determined for solutions of Al and humic acid that had been pre-equilibrated for different periods of time. Whilst the amount of bound Al remained unchanged, its blocking effect was found to increase over a time frame of 2 days, which corresponds to the kinetics of the increase in complex inertness reported in most pertinent studies. Thus, the derived “diffusion theory” turned out to be inapplicable, since it cannot explain an increase in competition for the “initial” sites. A delayed degradation of polynuclear species (as found for Fe) does not occur. Consequently, the temporal changes must be based on structural rearrangements in the vicinity of bound Al, complicating the exchange or access. Time-dependent studies by laser fluorescence spectroscopy (steady-state and time-resolved) yielded evidence of substantial alterations, which were, however, immediately induced and did not show any significant trend on the time scale of interest, suggesting that the stabilisation process is based on comparatively moderate changes.
► Stabilisation processes for metal–humate complexes occur on different time scales.
► In-diffusion of metals to strong internal sites can be ruled out as an explanation.
► Polynuclear metal species in touch with humic colloids are not generally metastable.
► Structural changes around humic-bound metals were spectroscopically detected.
Journal: Applied Geochemistry - Volume 27, Issue 1, January 2012, Pages 250–256