کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4440115 1311048 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of the adsorption capability onto activated carbon of a large data set of chemicals by local lazy regression method
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Prediction of the adsorption capability onto activated carbon of a large data set of chemicals by local lazy regression method
چکیده انگلیسی

Accurate quantitative structure–property relationship (QSPR) models based on a large data set containing a total of 3483 organic compounds were developed to predict chemicals’ adsorption capability onto activated carbon in gas phrase. Both global multiple linear regression (MLR) method and local lazy regression (LLR) method were used to develop QSPR models. The results proved that LLR has prediction accuracy 10% higher than that of MLR model. By applying LLR method we can predict the test set (787 compounds) with Q2ext of 0.900 and root mean square error (RMSE) of 0.129. The accurate model based on this large data set could be useful to predict adsorption property of new compounds since such model covers a highly diverse structural space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Environment - Volume 44, Issue 25, August 2010, Pages 2954–2960
نویسندگان
, , , , , ,