کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4452307 | 1620747 | 2014 | 15 صفحه PDF | دانلود رایگان |
• An in-depth chemical analysis of insoluble residues in rain and snow is described.
• Laboratory control experiments support classifications of precipitation residues.
• Both insoluble and soluble measurements are important for precipitation chemistry.
• Dust is a major component of insoluble precipitation residues in California.
• Dust with biological material was more IN active compared to mineral dust.
Precipitation chemistry can provide unique insights into the composition of aerosol particles involved in precipitation processes. Until recently, precipitation chemistry studies focused predominantly on soluble components. Analyzing the single particle insoluble components in addition to soluble ions in precipitation can provide detailed information on the individual particles originally in the cloud or removed by precipitation as well as the source of the aerosols. Herein, we present an in-depth analysis of resuspended residues from precipitation samples collected at a remote site in the Sierra Nevada Mountains in California during the 2009–2011 winter seasons. In addition, we present results from laboratory control experiments of dust, leaf litter, smoke, and sea salt samples that were conducted to better understand how insoluble and soluble residues are distributed during the atomization process and aid in the classification of the residue compositions in the precipitation samples. Further, immersion freezing ice nuclei (IN) measurements of insoluble residues from precipitation water enabled the determination of residue types that likely seeded clouds. Long-range transported dust mixed with biological material tended to be more IN active, while purely biological residues contained a variety of high and low temperature IN. Overall, results from this study can be used as a benchmark for classification of insoluble precipitation residues in future studies. Knowledge of the precipitation chemistry of insoluble residues coupled with meteorological and cloud microphysical measurements will ultimately improve our understanding of the link between aerosols, clouds, and precipitation.
Journal: Journal of Aerosol Science - Volume 76, October 2014, Pages 13–27