کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4460285 | 1621316 | 2009 | 9 صفحه PDF | دانلود رایگان |

The snow water equivalent (SWE) for the Red River basin of North Dakota and Minnesota was retrieved from data acquired by passive microwave SSM/I (Special Sensor Microwave Imager) sensors mounted on the US Defense Meteorological Satellite Program (DMSP) satellites, physiographic and atmospheric data by an artificial neural network called Modified Counter Propagation Network (MCPN), a Projection Pursuit Regression (PPR) and a nonlinear regression. The airborne gamma-ray measurements of SWE for 1989 and 1997 were used as observed SWE, and SSM/I data of 19 and 37 GHz frequencies, in both horizontal and vertical polarization, were used for the calibration (1989 data from DMSP-F8) and validation (1997 data from DMSP-F10 and F13 of both ascending and descending overpass times were combined) of the models. The SSM/I data were screened for the presence of wet snow, large water bodies like lakes and rivers, and depth-hoar. The MCPN model produced encouraging results in both calibration and validation stages (R2 was about 0.9 for both calibration (C) and validation (V)), better than PPR (R2 was 0.86 for C and 0.62 for V), which in turn was better than the multivariate nonlinear regression at the calibration stage (R2 was 0.78 for C and 0.71 for V). MCPN is probably better than the linear and nonlinear regression counterparts because of its parallel computing structure resulted from neurons interconnected by a parallel network and its ability to learn and generalize information from complex relationships such as the SWE-SSM/I or other relationships encountered in geosciences.
Journal: Remote Sensing of Environment - Volume 113, Issue 5, 15 May 2009, Pages 919–927